Doctor of Philosophy Program

In Computer Science and Information Systems (International Program)

Revised Program 2012

Name of Institution: National Institute of Development Administration
Responsible Agency: Graduate School of Applied Statistics

Section 1. General Information

1. Name of Program

Name in Thai: หลักสูตรปรัชญาดุษฎีบัณฑิต สาขาวิชาวิทยาการคอมพิวเตอร์และระบบสารสนเทศ (หลักสูตรนานาชาติ)
Name in English: Doctor of Philosophy Program in Computer Science and Information Systems (International Program)

2. Name of Degree

Full Name: ปรัชญาดุษฎีบัณฑิต (วิทยาการคอมพิวเตอร์และระบบสารสนเทศ)
Doctor of Philosophy (Computer Science and Information Systems)
Abbreviated Name: ปร.ด.(วิทยาการคอมพิวเตอร์และระบบสารสนเทศ)
Ph.D. (Computer Science and Information Systems)

3. Major

1. Computer Science
2. Information Systems

4. Number of credits in the curriculum

Plan 1(1.1) 48 credits
Plan 2(2.1) 54 credits
5. Characteristic of the Program

5.1 Characteristic
Doctorate degree according to the standard of higher education program

5.2 Medium of Instruction
English

5.3 Admissions
Open for Thai and International graduates with a master's degree in Computer Science, Information Systems Management, Computer Engineering, and Information Technology or in the related fields, having a good command of English, graduated from the institutes both domestic and abroad, which have been accredited by the Commission on Higher Education (CHE)

5.4 Cooperation with Other Institutes
Educational Institutes and Universities with collaboration agreements.

5.5 Presenting the Degree to the Graduates
The same degree will be provided for both majors.

6. Curriculum Status and the Consideration for Approval / Endorsement of the Curriculum

☑ Improved Curriculum 2012 offered at the second semester, academic year 2012

Committee of the Academic Council authorized / approved the curriculum at its 3rd meeting on August 17, 2012

The Council of the National Institute of Development Administration authorized / approved the curriculum at its 8th meeting (special) on August 22, 2012

7. Readiness in Publishing the Curriculum with Quality and Standards
The curriculum is ready to be published with quality and standards according to Qualification Standards in the academic year 2014

8. Professionals to undertake after graduation

8.1 Scholars / professors in educational institutions
8.2 Researchers in computer and information technology
8.3 Executives on information technology and information systems management in both public and private organizations
9. Name, Identification Number, ID Card, Position and Qualifications of the Instructors Responsible for the Curriculum

<table>
<thead>
<tr>
<th>Name-Family Name</th>
<th>ID Card Number</th>
<th>Highest qualification / Branches.</th>
<th>Institute of Attainment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assoc. Prof. Dr. Surapong</td>
<td>xxxxxxxxxxxxx</td>
<td>Ph.D.(Computer Science)</td>
<td>Southern Methodist University, USA.</td>
</tr>
<tr>
<td>Auwatanamongkol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assoc. Prof. Dr. Pipat</td>
<td>xxxxxxxxxxxxx</td>
<td>D.E. (Information Processing)</td>
<td>Tokyo Institute of Technology, Japan</td>
</tr>
<tr>
<td>Hiranvanichakorn</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asst.Prof. Dr. Pramote</td>
<td>xxxxxxxxxxxxx</td>
<td>Ph.D.(Electrical and Computer Engineering)</td>
<td>Georgia Institute of Technology, USA.</td>
</tr>
<tr>
<td>Kuacharoen</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Place for Studying

Graduate School of Applied Statistics, class rooms and places for studying of the National Institute of Development Administration

11. External Circumstances or Developments that Need to be Taken Into Consideration in Planning the Curriculum

The rapid advancement of information technology contributes to the changes, opportunities and threats to the economy and society. Thailand must be prepared to cope with such changes. The strategic goals of the country's information technology policies and communication have, therefore, been set for the development of many of qualified human resources and researchers in information technology to accommodate the situation.

12. Impact of Item 11 on the Development of the Curriculum and Its Relevance to the Mission of the Institute

12.1 Curriculum Development
Based on the external circumstances in Item 11, it is necessary to develop a curriculum to produce graduates with a doctorate in computer science and information systems with knowledge and ability to do research and apply knowledge to practical. The graduates must be good moral persons according to the policies and vision of the NIDA in producing the knowledgable graduates with ethics.

12.2 Relevant to the Mission of the Institution

The curriculum is consistent with the mission of the Institute, that is to produce doctorate graduates with knowledge and virtue who will be the leaders in the development of both the economy and society of the country.

13. Relationship with Other Programs Offered in Other Schools / Departments of the Institute

13.1 Courses / Subjects in the Curriculum being offered by other Schools / Departments

English as remedial courses under the School of Language and Communication of NIDA

13.2 Courses / Subjects in this Curriculum that are available for Other Curriculums

Other students from other curriculums of the institution can choose to take all courses offered in the curriculum. Taking such courses must conform to the requirements of the curriculums, must receive the approval from advisor and instructor.

13.3 Administration

Lecturers responsible for the curriculum must coordinate with the representatives from other schools in relevant to subject matter, class schedule / examination schedule and in compliance with the standard for doctoral qualifications in Computer Science and Information Systems.
Section 2. Specific Information of the Curriculum

1. Philosophy, Importance and Objectives of the Curriculum

1.1 Philosophy

At present information technology plays major role for Thailand development. However, the country is in shortage for personnel in Information Technology, especially computer science and information system specialists. Therefore, the main objective of this doctoral program is to produce these needed Information Technology personnel.

1.2 Objectives

1.2.1 To produce graduates with expertise on both theoretical foundations and applications of computer science and information systems.

1.2.2 To produce computer science and information systems personnel at the Ph.D. level to fulfill the demand that increases rapidly in these areas.

1.2.3 To enhance Thailand capability to conduct research by producing researchers in the areas of computer science and information systems.

1.2.4 To produce graduates with good knowledge and high ethics, that will take part in the country development.

2. Development Plans

<table>
<thead>
<tr>
<th>Development/Adjustment Plans</th>
<th>Strategies</th>
<th>Evidences/Indicators</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Improving the curriculum to meet the standards specified by CHE</td>
<td>- Developing the curriculum according to the standards specified by CHE</td>
<td>- Curriculum documents. - Curriculum evaluation reports</td>
</tr>
<tr>
<td>- Improving the curriculum to meet the needs of the markets and changes in information technology</td>
<td>- Curriculum evaluation on a regular basis - Tracking the changing needs of the markets and changes in the fields.</td>
<td>- Report on the evaluation of the satisfaction of the employers of the graduates - Satisfaction in the skills, knowledge, the ability to work of the graduates.</td>
</tr>
</tbody>
</table>
Section 3. Educational Management System, Implementation and the Structure of the Curriculum

1. Educational Management System

1.1 System

It is the bi-semester educational systems with credits. All requirements are in accordance with the regulation of the National Institute of Development Administration concerning the Education.

1.2 Summer Session Studying

Summer Session Studying is subject to the consideration of the lecturer responsible for the curriculum.

1.3 Comparable Credits in the Bi-semester System

None

2. Implementation of the Curriculum

2.1 Studying Period

<table>
<thead>
<tr>
<th>Semester</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester 1</td>
<td>August–December</td>
</tr>
<tr>
<td>Semester 2</td>
<td>January–May</td>
</tr>
<tr>
<td>Summer Session</td>
<td>June–July</td>
</tr>
</tbody>
</table>

2.2 Qualifications of the Applicants

2.2.1 Must be graduated with master degree in Computer Science, Computer Engineering, Information Technology, Information System Management or related science from an institution accredited by CHE.

2.2.2 Have good academic records and good command of English, both written and verbal.

2.3 Obstruction of the New Students

Students applying to study in the program have English TOEFL or IELT score less than the requirements.

2.4 Strategies to resolve problems / limitations of the student in Item 2.3.

Students need to learn the supplementary English courses according to the institute requirements.
2.5 Plans for Student Admission and Graduates within 5 Years

<table>
<thead>
<tr>
<th>Number of the Students</th>
<th>Academic Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Admission</td>
<td>5</td>
</tr>
<tr>
<td>Accumulated Number</td>
<td>-</td>
</tr>
<tr>
<td>Number of Graduates</td>
<td>-</td>
</tr>
</tbody>
</table>

2.6 Budget as Planned

The budget will be provided by the government and revenue of the National Institute of Development Administration.

2.7 Studying Methodology

- ✔ Classroom
- ☐ Distant study via publications
- ☐ Distant study via the broadcast media
- ☐ Distant study via E-learning
- ☐ Distant study via the internet
- ☐ Others (specify)

2.8 Education Equivalence Credits Transfer, Courses and Enrollment into Higher Education Institutions.

Guidelines for Education Equivalence Credits Transfer are based on the regulations of the National Institute of Development Administration concerning education and/or the notification of the Graduate School of Applied Statistics.

3. Curriculum and Instructors.

3.1 Curriculum

3.1.1 Number of Credits

Plan 1 (1.1) Focuses on research, no requirement for courses, a total of 48 credits.

Plan 2 (2.1) Research and course requirements, a total of 54 credits.
3.1.2 Curriculum Structure

<table>
<thead>
<tr>
<th>Courses</th>
<th>Plan 1 (1.1)</th>
<th>Plan 2 (2.1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Focuses on research, no requirement for courses</td>
<td>Research and courses requirements</td>
</tr>
<tr>
<td>Remedial courses</td>
<td>6 credits (Non-credit)</td>
<td>6 credits (Non-credit)</td>
</tr>
<tr>
<td>Core courses</td>
<td>-</td>
<td>6 credits</td>
</tr>
<tr>
<td>Major courses</td>
<td>-</td>
<td>6 credits</td>
</tr>
<tr>
<td>Elective courses (minimum)</td>
<td>-</td>
<td>6 credits</td>
</tr>
<tr>
<td>Thesis</td>
<td>48 credits</td>
<td>36 credits</td>
</tr>
<tr>
<td>Total not less than</td>
<td>48 credits</td>
<td>54 credits</td>
</tr>
</tbody>
</table>

3.1.3 Courses

1. **Remedial Courses** (Non credit)
 - LC 6000 Advanced Reading and Writing in English for Graduate Studies 3 Credits
 - LC 4003 Advanced Integrated English Language Skill Development 3 Credits

2. **Core Courses** (6 credits for Plan 2 (2.1) students)
 - CI 7000 Research Methods in Computer Science and Information Systems 3 Credits
 - CI 7104 Advanced Database Systems 3 Credits

3. **Major Courses** (6 credits for Plan 2 (2.1) students)
 - **Major in Computer Science**
 - CI 7502 Advanced Computer Architectures 3 Credits
 - CI 7604 Design and Analysis of Algorithms 3 Credits
 - **Major in Information Systems**
 - CI 7210 Information Systems Management 3 Credits
 - CI 7305 Information Security Management 3 Credits

4. **Elective Courses** (6 credits for Plan 2 (2.1) students)
 - CI 7213 Decision Technology for Management 3 Credits
 - CI 7214 Management of Information Technology Resources 3 Credits
 - CI 7306 Computer and Network Security 3 Credits
 - CI 7302 Cryptography 3 Credits
CI 7307 Wireless and Mobile Communications 3 Credits
CI 7402 Advanced Topics in Artificial Intelligence 3 Credits
CI 7403 Machine Learning 3 Credits
CI 7405 Advanced Topics in Data Mining 3 Credits
CI 7406 Data Mining 3 Credits
CI 7407 Neural Networks 3 Credits
CI 7503 Parallel Computing 3 Credits
CI 7504 Compiler Construction 3 Credits
CI 7602 Combinatorics and Graph Theory 3 Credits
CI 7605 Theory of Computation 3 Credits
CI 7801 Computer Graphics 3 Credits
CI 7802 Multimedia Processing 3 Credits
CI 7803 Image Processing 3 Credits
CI 8700 Readings in Computer Science and Information Systems 3 Credits
CI 8701 Seminar in Advanced Topics in Computer Science and Information Systems 3 Credits
CI 8800-8809 Selected Topics in Computer Science and Information Systems 3 Credits
CI 9000 Independent Study 3 Credits

Remark:
- The Elective courses also include other graduate courses offered by the school or others in NIDA (To register for these courses, students must receive approvals from his/her advisor)
- Elective courses opened in each semester will be selected by the school and the institute.

(5) Dissertation
CI 9900 Dissertation 36, 48 Credits

3.1.4 Study Plan

Plan 1 (1.1) Dissertation only

1st Semester of the 1st Year
LC 6000 Advanced Reading and Writing in English for Graduate Studies 3 Credits *
CI 9900 Dissertation 6 Credits

Total 6 Credits
2nd Semester of the 1st Year
LC 4003 Advanced Integrated English Language 3 Credits *
 Skill Development
CI 9900 Dissertation 6 Credits
Total 6 Credits

Following semesters
CI 9900 Dissertation 36 หน่วยกิต
Total 48 Credits

Remark * Non credit
Study plan can be changed depending on suitability

Plan 2 (2.1) Dissertation and coursework
1st Semester of the 1st Year
LC 6000 Advanced Reading and Writing in English for Graduate Studies 3 Credits *
CI xxxx Core course 3 Credits
CI xxxx Core course 3 Credits
CI xxxx Major course 3 Credits
Total 9-12 Credits

2nd Semester of the 1st Year
LC 4003 Advanced Integrated English Language 3 Credits *
 Skill Development
CI xxxx Major course 3 Credits
CI xxxx Elective course 6 Credits
Total 9-12 Credits

Following semesters
CI 9900 Dissertation 36 Credits
Total 36 Credits

Remark * Non credit
Study plan can be changed depending on suitability
3.1.5 Course Description

LC 6000 Advanced Reading and Writing in English for Graduate Studies 3 credits

Review of essential reading and writing strategies required to read and write academic English. Course contents include work on sentence structures, vocabulary and recognition of major thought relationships in paragraphs, as well as practice in reading and writing academic English.

LC 4003 Advanced Integrated English Languages Skill Development 3 credits

Course contents and teaching activities focus on the integrated skills of listening, speaking, reading and writing with a particular emphasis on academic writing. Students will also work in small groups, practicing paper presentation techniques, precise writing, and research writing.

CI 7000 Research Methods in Computer Science and Information Systems 3 credits

Introduction to research areas in computer science and information systems, qualitative and quantitative methods of research, research project writing and presentation, statistical analysis and experimental design techniques, literature searches and reviews, and research ethics.

CI 7104 Advanced Database Systems 3 Credits

Advanced database system design principles and techniques, access methods, query processing and optimization, transaction processing, distributed databases, data warehousing.

Prerequisite: CI 6101 Database Systems or Instructor Consent.

CI 7210 Information Systems Management 3 credits

A broad overview of the issues managers face in the selection, use, and management of information technology, information technology strategies, information technology and organization, and information technology assets management.
CI 7213 Decision Technology for Management
3 credits

Decision process, mathematical models for parameter determination, models for resource allocation, inventory, transportation and job assignment, dynamic programming model, stochastic models for business and industrial decision makings, Poisson process, birth-death process, continuous-time and discrete Markov chains, recurrent process, stochastic analysis, applications to queuing, inventory, financial and risk problems. Applications with management and business problems for minimizing cost and maximizing business advantages.

Prerequisite: AS 4001 Mathematics for Applied Statistics or Instructor Consent

CI 7214 Management of Information Technology Resources
3 credits

Management of information technology (IT) as an organizational asset. Investigation of the problems, challenges, and issues facing IT managers in a rapidly changing, competitive environment. A "best practices" approach to solutions is developed.

CI 7302 Cryptography
3 Credits

Theory, foundations, and applications of modern cryptography, number theory and its applications, Primarily testing, public–key and discrete–log cryptosystem, one–way functions, pseudo-randomness, zero–knowledge proofs, multiparty cryptographic protocols, practical

CI 7305 Information Security Management
3 Credits

Security vulnerability in information systems, organizational impact in case of security violation, security policy development life cycle, security requirement assessment, steps in security policy development, security architecture, attack strategies, management roles and responsibilities, security policy implementation, auditing, virus protection, firewalls and firewall architectures authentication and access control, and encryption techniques.

Prerequisite: CI 6102 Data Communication and Computer Networks or Instructor Consent.

applications.
CI 7306 Computer and Network Security 3 Credits
 Principles of computer and network security. Symmetry and asymmetry key cryptosystem, authentication protocol, digital signature and public key infrastructure, message integrity. Threat and security management, secure programming, ethics and laws.
 Prerequisite: CI 6102 Data Communication and Computer Networks or Instructor Consent.

CI 7307 Wireless and Mobile Communications 3 Credits
 Principled introduction to wireless and Mobile communications, wireless data transmission, radio frequency communications and propagation characteristics, antenna systems. Network architecture and security in WPANs, WLANs, WMANs and WWANs.

CI 7402 Advanced Topics in Artificial Intelligence 3 Credits
 Advanced topics in Artificial Intelligence, such as, Planning, Natural Language Processing, Web Search, Fuzzy Logic, Markov Decision Problems, Bayesian Networks, Genetic Algorithms, Reinforcement Learning.
 Prerequisite: CI 7401 Artificial Intelligence or Instructor Consent

CI 7403 Machine Learning 3 Credits
 Probability, Classification Theory, Bayesian and Naïve Bayes Classifiers, Linear Regression, Decision Trees, Neural Networks, Instance-Based Learning, Support Vector Machine, Hidden Markov Models, Principal Component Analysis
 Prerequisite: CI 7401 Artificial Intelligence or Instructor Consent.

CI 7405 Advanced Topics in Data Mining 3 Credits
 Advanced Topics in Data Mining, Classification Techniques, Clustering Techniques, Combining Multiple Techniques, Model Evaluation, Data Visualization, Web Mining and Text Mining.
 Prerequisite: CI 7404 Data Mining or Instructor Consent
CI 7406 Data Mining 3 Credits
Data Preprocessing, Statistical Approaches to Estimation and Prediction, Classification, Clustering, Association Analysis and Applications.
Prerequisite: CI 4002 Data Structures and Algorithms or Instructor Consent

CI 7407 Neural Networks 3 credits
Prerequisite: CI 7401 Artificial Intelligence or Instructor Consent

CI 7502 Advanced Computer Architectures 3 Credits
Computer models and architectures, parallel computing, pipeline computer architectures, VLIW architecture, superscalar processor architecture, SIMD computer architectures, MIMD computer architecture, and interconnection networks.
Prerequisite: CI 7311 Computer Architecture or Instructor Consent.

CI 7503 Parallel Computing 3 Credits
Prerequisite: CI 7311 Computer Architecture or Instructor Consent.

CI 7504 Compiler Construction 3 Credits
Theory and practice in compiler construction, lexical and syntax analysis, basic theory on context-free languages and parsing, machine code generation and optimization, automatic parser generation, compiler writing, and extendible compilers.
Prerequisite: CI 4002 Data Structures and Algorithms or Instructor Consent.
CI 7602 Combinatorics and Graph Theory 3 Credits

Enumeration, generating function, recurrence relations, counting numbers, inclusion-exclusions, graphs and their applications, Euler tours, Hamiltonian cycles, bipartite, connectivity, set covering, graph coloring, network flow problems
Prerequisite: CI 4002 Data Structures and Algorithms or Instructor Consent.

CI 7604 Design and Analysis of Algorithms 3 Credits

Complexity of algorithms, analysis of algorithm complexity, divide-and-conquer algorithms, amortized analysis, disjoint sets, priority queues, graph algorithms, pattern matching, matrix multiplication, geometric algorithms, polynomial multiplication, fast Fourier, greedy algorithms, dynamic programming, NP-Completeness problems, approximation algorithms
Prerequisite: CI 4002 Data Structures and Algorithms or Instructor Consent.

CI 7605 Theory of Computation 3 Credits

Deterministic finite state automata, nondeterministic finite state automata, regular language, push-down automata, context-free language, normal forms of context-free language, Turing machine, context-sensitive language, language hierarchy.

CI 7801 Computer Graphics 3 Credits

Introduction to computer graphics: hardware and software, basic raster graphic algorithms, 2D Geometrical transformations, window and clipping, computer animation, 3D graphics, 3D modeling, introduction to hidden surface problems, 3D geometrical and viewing transformations, shading, curvature lines and surfaces.
Prerequisite: CI 4002 Data Structures and Algorithms or Instructor Consent.

CI 7802 Multimedia Processing 3 Credits

Introduction to multimedia, multimedia data compression, multimedia realtime transmission and protocols, multimedia database systems, multimedia documents, presentation of multimedia data and applications of multimedia.
Prerequisite: CI 4002 Data Structures and Algorithms or Instructor Consent.
CI 7803 Image Processing 3 credits
Digital images in color or black and white, image storages, image pre-processing, segmentation, shape representation and description, image recognition and understanding, image transformation, image compression, image processing software and system, and image databases.
Prerequisite: CI 4002 Data Structures and Algorithms or Instructor Consent

CI 8700 Readings in Computer Science and Information Systems 3 credits
This course intends to allow a student who is preparing a dissertation proposal or is interested in a particular research topic to read academic papers under instructors' supervision. The student must present an analytical report on the topic to the supervisor.

CI 8701 Seminar in Advanced Topics in Computer Science and Information Systems 3 credits
This course is to provide students the insights into advanced topics in computer science and information systems. The students must complete term papers and present them to the class.

CI 8800-8809 Selected Topics in Computer Science and Information Systems 3 credits
Study in topics different from courses in the regular curriculum, under the school's approval.

CI 9000 Independent Study 3 Credits
Students select an independent study topic which must be approved by the instructor and students must submit a term paper.

CI 9900 Dissertation 36-48 credits
Each student conducts a research on a particular topic under consultation of an advisor as well as attends courses as suggested by the advisor. Students must summit a dissertation proposal, research progress reports, and take final examination.
3.2 Title, name – surname, ID number and academic degree of staffs

3.2.1 Program's Responsible Staffs

<table>
<thead>
<tr>
<th>Title / Name - Surname</th>
<th>ID No.</th>
<th>Degree</th>
<th>Major</th>
<th>Institute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assoc.Prof Dr. Surapong Auwatanamongkol</td>
<td>xxxxxxxxxxxxxxxx</td>
<td>Ph.D.</td>
<td>Computer Science</td>
<td>Southern Methodist University, U.S.A.</td>
</tr>
<tr>
<td>Assoc.Prof Dr.Pipat Hiranvanichakorn</td>
<td>xxxxxxxxxxxxxxxx</td>
<td>D.E.</td>
<td>Information Processing</td>
<td>Tokyo Institute of Technology, Japan.</td>
</tr>
<tr>
<td>Asst.Prof Dr.Promote Kuacharoen</td>
<td>xxxxxxxxxxxxxxxx</td>
<td>Ph.D.</td>
<td>Electrical and Computer Engineering</td>
<td>Geogia Institute of Technology, U.S.A.</td>
</tr>
<tr>
<td>Asst.Prof Dr.Supoj Sutanthavibul</td>
<td>xxxxxxxxxxxxxxxx</td>
<td>Ph.D.</td>
<td>Computer Science</td>
<td>University of Texas at Austin, U.S.A.</td>
</tr>
<tr>
<td>Dr. Rattakorn Poonsuph</td>
<td>xxxxxxxxxxxxxxxx</td>
<td>Sc.D.</td>
<td>Computer Science</td>
<td>University of Massachusetts Lowell, U.S.A.</td>
</tr>
</tbody>
</table>

3.2.2 Fulltime Faculty Members

<table>
<thead>
<tr>
<th>Title / Name - Surname</th>
<th>ID No.</th>
<th>Degree</th>
<th>Major</th>
<th>Institute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof.Dr.Prachoom Suwattee</td>
<td>xxxxxxxxxxxxxxxx</td>
<td>Ph.D.</td>
<td>Statistics</td>
<td>North Carolina State University, U.S.A.</td>
</tr>
<tr>
<td>Assoc.Prof Dr.Jirawan Jitthavech</td>
<td>xxxxxxxxxxxxxxxx</td>
<td>Ph.D.</td>
<td>Statistics</td>
<td>University of Georgia, U.S.A.</td>
</tr>
<tr>
<td>Assoc.Prof Dr.Duanpen Teerawanviwat</td>
<td>xxxxxxxxxxxxxxxx</td>
<td>Ph.D.</td>
<td>Population Studies</td>
<td>University of Hawaii (Manoa), U.S.A.</td>
</tr>
<tr>
<td>Assoc.Prof Dr.Pachitjanut Siripanich</td>
<td>xxxxxxxxxxxxxxxx</td>
<td>Ph.D.</td>
<td>Statistics</td>
<td>Oregon State University, U.S.A.</td>
</tr>
<tr>
<td>Assoc.Prof Dr.Patcharaporn Neammanee</td>
<td>xxxxxxxxxxxxxxxx</td>
<td>Ph.D.</td>
<td>Industrial Engineering</td>
<td>Oregon State University, U.S.A.</td>
</tr>
<tr>
<td>Assoc.Prof Dr.Pipat Hiranvanichakorn</td>
<td>xxxxxxxxxxxxxxxx</td>
<td>D.E.</td>
<td>Information Processing</td>
<td>Tokyo Institute of Technology, Japan.</td>
</tr>
<tr>
<td>Assoc.Prof Dr.Raweewan Auepanwiriyakul</td>
<td>xxxxxxxxxxxxxxxx</td>
<td>Ph.D.</td>
<td>Computer Science</td>
<td>University of North Texas, U.S.A.</td>
</tr>
<tr>
<td>Title / Name - Surname</td>
<td>ID No.</td>
<td>Degree</td>
<td>Major</td>
<td>Institute</td>
</tr>
<tr>
<td>------------------------</td>
<td>----------------</td>
<td>--------</td>
<td>-------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Assoc.Prof</td>
<td>xxxxxxxxxxxxxx</td>
<td>Ph.D.</td>
<td>Electrical Engineering</td>
<td>Montana State University, U.S.A.</td>
</tr>
<tr>
<td>Dr. Vichit Lorchirachoonkul</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assoc.Prof</td>
<td>xxxxxxxxxxxxxx</td>
<td>Ph.D.</td>
<td>Statistics</td>
<td>University of Missouri-Columbia, U.S.A.</td>
</tr>
<tr>
<td>Dr. Samruam Chongcharoen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asst.Prof</td>
<td>xxxxxxxxxxxxxx</td>
<td>Ph.D.</td>
<td>Industrial Engineering</td>
<td>University of Minnesota-Twin Cities, U.S.A.</td>
</tr>
<tr>
<td>Dr. Kannapha Amaruchkul</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asst.Prof</td>
<td>xxxxxxxxxxxxxx</td>
<td>Ph.D.</td>
<td>Computer Science</td>
<td>Illinois Institute of Technology, U.S.A.</td>
</tr>
<tr>
<td>Dr. Jugkarin Sukmok</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asst.Prof</td>
<td>xxxxxxxxxxxxxx</td>
<td>Ph.D.</td>
<td>Industrial Management</td>
<td>Clemson University, U.S.A.</td>
</tr>
<tr>
<td>Dr. Nithinant Thammakoranontasubhi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asst.Prof</td>
<td>xxxxxxxxxxxxxx</td>
<td>Ph.D.</td>
<td>Management of Technology</td>
<td>AIT, Thailand</td>
</tr>
<tr>
<td>Dr. Preecha Vichitthamaros</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asst.Prof</td>
<td>xxxxxxxxxxxxxx</td>
<td>M.S.</td>
<td>Computer Science</td>
<td>Georgia Institute of Technology, U.S.A.</td>
</tr>
<tr>
<td>Patrawadee Tanawongsuwan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asst.Prof</td>
<td>xxxxxxxxxxxxxx</td>
<td>Ph.D.</td>
<td>Computing and Information systems</td>
<td>Monash University, Australia.</td>
</tr>
<tr>
<td>Dr. Waraporn Jirachiefpattana</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asst.Prof</td>
<td>xxxxxxxxxxxxxx</td>
<td>M.S.</td>
<td>Statistics & Actuarial Science</td>
<td>University of Iowa, U.S.A.</td>
</tr>
<tr>
<td>Weena Chaisilaparungruang</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asst.Prof</td>
<td>xxxxxxxxxxxxxx</td>
<td>Ph.D.</td>
<td>Computer Science and Communication Engineering</td>
<td>Kyushu University, Japan.</td>
</tr>
<tr>
<td>Dr. Sukanya Suranauwarat</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asst.Prof</td>
<td>xxxxxxxxxxxxxx</td>
<td>M.S.</td>
<td>Hons. (Applied Statistics)</td>
<td>NIDA, Thailand</td>
</tr>
<tr>
<td>Suthichai Suttitosatam</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asst.Prof</td>
<td>xxxxxxxxxxxxxx</td>
<td>Ph.D.</td>
<td>Computer Science</td>
<td>Illinois Institute of Technology, U.S.A.</td>
</tr>
<tr>
<td>Dr. Sutep Tongngam</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asst.Prof</td>
<td>xxxxxxxxxxxxxx</td>
<td>Ph.D.</td>
<td>Computer Science</td>
<td>Virginia Tech, U.S.A.</td>
</tr>
<tr>
<td>Dr. Ohm Sornil</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Thitirat Siriborvornratanakul</td>
<td></td>
<td></td>
<td></td>
<td>University of Tokyo, Japan</td>
</tr>
<tr>
<td>Asst.Prof</td>
<td>xxxxxxxxxxxxxx</td>
<td>Ph.D.</td>
<td>Computer Engineering</td>
<td>University of Tokyo, Japan</td>
</tr>
<tr>
<td>Dr. Pramote Luenam</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asst.Prof</td>
<td>xxxxxxxxxxxxxx</td>
<td>Ph.D.</td>
<td>Information</td>
<td>University of</td>
</tr>
<tr>
<td>Title / Name - Surname</td>
<td>ID No.</td>
<td>Degree</td>
<td>Major</td>
<td>Institute</td>
</tr>
<tr>
<td>------------------------</td>
<td>--------</td>
<td>--------</td>
<td>-----------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Systems</td>
<td>Maryland, Baltimore County, U.S.A.</td>
</tr>
</tbody>
</table>
Section 5. Educational Evaluation and Grading System

1. Regulation and Grading Criteria

The grading system for the courses listed in the program conforms to the standard stated in the educational regulations of the National Institute of Development of Administration. Computation of grade point averages will be as follows:

\[
\begin{align*}
A & = 4.0 \text{ (Excellent)} \\
A- & = 3.7 \text{ (Very Good)} \\
B+ & = 3.3 \text{ (Good)} \\
B & = 3.0 \text{ (Fairly Good)} \\
B- & = 2.7 \text{ (Almost Good)} \\
C+ & = 2.3 \text{ (Fair)} \\
C & = 2.0 \text{ (Almost fair)} \\
C- & = 1.7 \text{ (Poor)} \\
D & = 1.0 \text{ (Very poor)} \\
F & = 0 \text{ (Failure)} \\
W & = \text{Withdrawal} \\
I & = \text{Incomplete} \\
S & = \text{Satisfactory} \\
U & = \text{Unsatisfactory} \\
AU & = \text{Audit} \\
P & = \text{Pass} \\
IP & = \text{In progress} \\
T & = \text{Terminate} \\
TR & = \text{Transfer, work with which there is no comparable grade}
\end{align*}
\]